Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2024.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2024.01.12.24301206

ABSTRACT

BackgroundBy March 2023, 54 countries, areas and territories (thereafter "CAT") reported over 2.2 million coronavirus disease 2019 (COVID-19) deaths to the World Health Organization (WHO) Regional Office for Europe (1). Here, we estimate how many lives were directly saved by vaccinating adults in the Region, from December 2020 through March 2023. MethodsWe estimated the number of lives directly saved by age-group, vaccine dose and circulating Variant of Concern (VOC) period, both regionally and nationally, using weekly data on COVID-19 mortality and COVID-19 vaccine uptake reported by 34 CAT, and vaccine effectiveness (VE) data from the literature. We calculated the percentage reduction in the number of expected and reported deaths. FindingsWe found that vaccines reduced deaths by 57% overall (CAT range: 15% to 75%), representing [~]1.4 million lives saved in those aged [≥]25 years (range: 0.7 million to 2.6 million): 96% of lives saved were aged [≥]60 years and 52% were aged [≥]80 years; first boosters saved 51%, and 67% were saved during the Omicron period. InterpretationOver nearly 2.5 years, most lives saved by COVID-19 vaccinationwere in older adults by first booster dose and during the Omicron period, reinforcing the importance of up-to-date vaccination among these most at-risk individuals. Further modelling work should evaluate indirect effects of vaccination and public health and social measures. FundingThis work was supported by a US Centers for Disease Control cooperative agreement (Grant number 6 NU511P000936-02-020), who had no role in data analysis or interpretation. DisclaimerThe authors affiliated with the World Health Organization (WHO) are alone responsible for the views expressed in this publication and they do not necessarily represent the decisions or policies of the WHO. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSSince first identified in late 2019, COVID-19 has caused disproportionately high mortality rates in older adults. With the rapid development and licensing of novel COVID-19 vaccines, immunization campaigns across the WHO European Region started in late 2020 and early 2021, initially targeting the most vulnerable and exposed populations, including older adults, people with comorbidities and healthcare professionals. Several studies have estimated the number of lives saved by COVID-19 vaccination, both at national and multi-country level in the earlier stages of the pandemic. However, only one multi-country study has assessed the number of lives saved beyond the first year of the pandemic, particularly when the Omicron variant of concern (VOC) circulated, a period when vaccination coverage was high in many countries, areas and territories (CAT), but COVID-19 transmission was at its highest. Added value of this studyHere we quantified the impact of COVID-19 vaccination in adults by age-group, vaccine dose and period of circulation of VOC, across diverse settings, using real world data reported by 34 CAT in the WHO European Region for the period December 2020 to April 2023. We estimated that COVID-19 vaccination programs were associated with a 57% reduction (CAT range: 15% to 75%) in the number of deaths among the [≥]25 years old, representing over 1.5 million lives saved (range: 0.7 million to 2.6 million) in 34 European CAT during the first 2.5 years following vaccine introduction. The first booster savedthe most lives (721,122 / 1,408,967, (57%) of all lives saved). The [≥]60 years old age group accounted for 96% of the total lives saved (1,349,617 / 1,408,967) whereas the [≥]80 years old age group represented 52% of the total lives saved (728,858 / 1,408,967 lives saved) and 67% of all lives were saved during the Omicron period (942,571 / 1,408,967). Implications of all the available evidenceOur results reinforce the importance of up-to-date COVID-19 vaccination, particularly among older age-groups. Communication campaigns supporting COVID-19 vaccination should stress the value of COVID-19 vaccination in saving lives to ensure vulnerable groups are up-to-date with vaccination ahead of periods of potential increased transmission.


Subject(s)
COVID-19
3.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2309.14801v1

ABSTRACT

The time varying reproduction number R is a critical variable for situational awareness during infectious disease outbreaks, but delays between infection and reporting hinder its accurate estimation in real time. We propose a nowcasting method for improving the timeliness and accuracy of R estimates, based on comparisons of successive versions of surveillance databases. The method was validated against COVID-19 surveillance data collected in Italy over an 18-month period. Compared to traditional methods, the nowcasted reproduction number reduced the estimation delay from 13 to 8 days, while maintaining a better accuracy. Moreover, it allowed anticipating the detection of periods of epidemic growth by between 6 and 23 days. The method offers a simple and generally applicable tool to improve situational awareness during an epidemic outbreak, allowing for informed public health response planning.


Subject(s)
COVID-19
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.01.22277137

ABSTRACT

Undernotification of SARS-CoV-2 infections has been a major obstacle to the tracking of critical quantities such as infection attack rates and the probability of severe and lethal outcomes. We use a model of SARS-CoV-2 transmission and vaccination informed by epidemiological and genomic surveillance data to estimate the number of daily infections occurred in Italy in the first two years of pandemic. We estimate that the attack rate of ancestral lineages, Alpha, and Delta were in a similar range (10-17%, range of 95% CI: 7-23%), while that of Omicron until February 20, 2022, was remarkably higher (51%, 95%CI: 33-70%). The combined effect of vaccination, immunity from natural infection, change in variant features, and improved patient management massively reduced the probabilities of hospitalization, admission to intensive care, and death given infection, with 20 to 40-fold reductions during the period of dominance of Omicron compared to the initial acute phase.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Death
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1784587.v1

ABSTRACT

Undernotification of SARS-CoV-2 infections has been a major obstacle to the tracking of critical quantities such as infection attack rates and the probability of severe and lethal outcomes. We use a model of SARS-CoV-2 transmission and vaccination informed by epidemiological and genomic surveillance data to estimate the number of daily infections occurred in Italy in the first two years of pandemic. We estimate that the attack rate of ancestral lineages, Alpha, and Delta were in a similar range (10–17%, range of 95% CI: 7–23%), while that of Omicron until February 20, 2022, was remarkably higher (51%, 95%CI: 33–70%). The combined effect of vaccination, immunity from natural infection, change in variant features, and improved patient management massively reduced the probabilities of hospitalization, admission to intensive care, and death given infection, with 20 to 40-fold reductions during the period of dominance of Omicron compared to the initial acute phase.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL